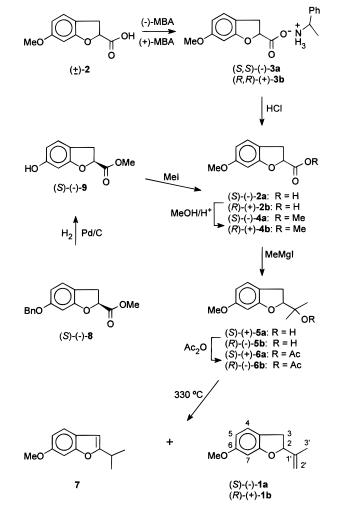
Synthesis and Absolute Configuration of (S)-(-)- and (R)-(+)-2,3-Dihydro-2-(1-methylethenyl)-6-methoxybenzofuran

Ricardo Tovar-Miranda,[†] Raúl Cortés-García,[†] Luis Raúl Trinidad-Nino,[†] and Pedro Joseph-Nathan^{*,‡}

Instituto de Ciencias Básicas, Universidad Veracruzana, Apartado Postal 575, Xalapa, Ver., 91000 México, and Departamento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, D.F., 07000 México

Received November 18, 1998

Resolution of racemic 2,3-dihydro-2-carboxy-6-methoxybenzofuran (2) by recrystallizations of diastereomeric salts prepared with (S)-(-)- α -methylbenzylamine and (R)-(+)- α -methylbenzylamine gave the starting materials for the four-step total syntheses of (S)-(-)-2,3-dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1a) and (*R*)-(+)-2,3-dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1b). Their absolute configuration was established by chemical correlation.


A Chemical Abstracts search for (S)-(-)-2,3-dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1a) and (R)-(+)-2,3-dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1b) revealed that these compounds appear in indexes^{1,2} as natural products isolated from Eupatorium gruppe³ and *Eupatorium aschembornianum*,⁴ respectively. When one carefully looks at the papers referenced, it becomes clear that the absolute configuration of the (*S*)-(–)-**1a** isomer was suggested tentatively based on analogy to other compounds⁵ and that the absolute stereochemistry of the (R)-(+)-1b isomer derives just from the drawing of the molecule; that is, the authors⁴ indicate that their compound is equal to the one published previously³ but have drawn the reverse stereochemistry. Neither of these papers^{3,4} reports optical activity data for either isomer. Therefore, we report here the synthesis and the absolute configuration of both (S)-(-)-1a and (R)-(+)-1b.

Results and Discussion

The preparation of (S)-(-)-**1a** and (R)-(+)-**1b** is shown in Scheme 1 using dihydrobenzofuran 2^6 as the starting material. This racemic molecule was resolved using the commercially available enantiomers of α -methylbenzylamine (α -MBA). Thus, compound **2** was dissolved in acetone, and one equivalent of (S)-(-)- α -MBA was added. The resultant precipitate was recrystallized several times from acetone to give the enantiomerically pure salt (-)-**3a**, mp 164–166 °C and $[\alpha]_D$ –72.6°. The mother liquors were concentrated and treated with hydrochloric acid to afford the acid **2**, which, in turn, was treated with (R)-(+)- α -MBA to give the enantiomerically pure salt (+)-**3b**, mp 165–166 °C and $[\alpha]_D$ +73°. Treatment of (–)-**3a** with diluted hydrochloric acid yielded acid (-)-2a as an amorphous solid, 122–123 °C and $[\alpha]_D$ –75°, while treatment of (+)-3b with diluted hydrochloric acid gave (+)-2b with $[\alpha]_{\rm D}$ +75.5°.

Each acid, (-)-2a and (+)-2b, was subjected to the following sequence of reactions: Treatment of (-)-2a/(+)-2b with methanol and *p*-toluenesulfonic acid gave the methyl esters⁷ (-)-4a/(+)-4b, which were treated with methylmagnesium iodide, yielding the tertiary alcohols (+)-5a/(-)-5b. Acetylation of (+)-5a/(-)-5b in boiling acetic

Scheme 1. Synthetic Route for (S)-(-)-1a and (R)-(+)-1b

anhydride afforded the corresponding acetates (+)-6a/ (-)-6b as amorphous solids. Fast pyrolysis⁸ of (+)-6a at 330 °C for 10 min afforded 2-isopropyl-6-methoxybenzofuran (7) and the desired (-)-2,3-dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1a)9,10 in a 1:8 ratio. When (+)-6a was heated for longer periods at 330 °C, compound 7 became the main product. Similarly, treatment of (-)-**6b** under the same conditions gave (+)-**1b** and **7**, also in an 8:1 ratio. Comparison of spectroscopic data of (-)-1a

10.1021/np9805210 CCC: \$18.00 © 1999 American Chemical Society and American Society of Pharmacognosy Published on Web 08/10/1999

^{*} To whom correspondence should be addressed. Tel.: +52 5747-7112. Fax: +52 5747-7113. E-mail: pjoseph@nathan.chem.cinvestav.mx. † Universidad Veracruzana.

[‡] Instituto Politécnico Nacional.

obtained by us with those reported for the natural product isolated from *E. gruppe*³ and *E. aschembornianum*⁴ revealed that they are identical.

The absolute configuration of (-)-4a and (+)-4b was established by chemical correlation using the (S)-(-)methyl coumarancarboxylate (8) of known configuration,¹¹ which was debenzylated by catalytic hydrogenolysis¹² in the presence of palladium on charcoal in ethanol to give the phenol (S)-(-)-9. Treatment of (S)-(-)-9 with iodomethane in acetone and K₂CO₃ afforded (S)-(-)-4a. Comparison of the spectroscopic and optical activity data of (S)-(-)-4a obtained from methyl ester (S)-(-)-8 with that prepared from salt (-)-3a revealed that they are identical. Therefore, the series of compounds prepared from salt (-)-3a have the *S* absolute configuration, while those prepared from (+)-3b are *R*.

The two protons at C-3 were stereochemically assigned after generating minimum energy structures using MMX force-field calculations as implemented in the PCMODEL program¹³ V4.00. The obtained dihedral angles for the dihydrofuran ring protons were used to estimate vicinal coupling constants using Karplus-type calculations by means of a computer program we developed almost a decade ago.14 The agreement between experimental and estimated values allowed individual assignment of H-3α and H-3 β for 2a, 4a, 6a, and 9. In these four cases H-3 β has a large coupling constant due to the trans orientation of H-2 and H-3 β , in which H-3 α has a smaller coupling constant due to the cis orientation of H-2 and H-3 α . Because, in the latter four cases, H-3 β appears at higher fields than H-3 α , we assigned by chemical-shift analogy the two protons at C-3 in **1a**, where $J_{2,3\alpha} = J_{2,3\beta} = 8.8$ Hz. Finally, in the case of 5a, instead of the ABX spin-spin system¹⁵ shown in all previously discussed ¹H NMR spectra, the dihydrofuran protons appear as an AX₂ system,15 characterized by chemical shifts and a single vicinal coupling constant, due to chemical shift coincidence of H-3 α and H-3 β . To gain evidence supporting a similar conformation of the five-membered 2,3-dihydrofuran ring in 5a, the ¹H NMR spectrum was determined in benzene d_6 , where it gave an ABX system, the pertinent data being in the Experimental Section.

Experimental Section

General Experimental Procedures. Organic layers were dried using anhydrous Na₂SO₄. Columns for chromatographic separations were packed with Merck Si gel 60 (230-400 mesh ASTM). Melting points were measured on a Melt-Temp II and are uncorrected. Specific rotations $[\alpha]_D$ were measured at the sodium-D line using a Perkin-Elmer 241 polarimeter at 25 °C. The concentration, c, given after specific rotations is indicated in g/100 mL. IR spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrophotometer. UV spectra were recorded on a Perkin-Elmer Lambda 2S spectrometer. ¹H and ¹³C NMR measurements were performed on a Varian XL-300GS spectrometer using CDCl₃ solutions containing TMS as internal standard. MS were obtained on a Hewlett-Packard 598A spectrometer at 20 eV. The ¹H, ¹³C NMR, UV, IR, and MS data for the **b** series are not described herein; they are identical to those of the a series.

(*S*)-(–)-Methylbenzylammonium (*S*)-2,3-Dihydro-6-methoxybenzofuran-2-carboxylate (3a). To a stirred solution of 2^6 (10 g, 51.6 mmol) in Me₂CO (40 mL) was added 6.7 mL (51.6 mmol) of (*S*)-(–)- α -MBA and further stirred for 1 min. The white crystalline precipitate formed was filtered and washed with Me₂CO. Six recrystallizations from Me₂CO gave 5 g of the homogeneous salt (*S*)-(–)-**3a** as a white cotton-like material, mp 164–166 °C; [α]_D –72.6° (*c* 2.3, MeOH).

(*R*)-(+)-Methylbenzylammonium (*R*)-2,3-Dihydro-6methoxybenzofuran-2-carboxylate (3b). The mother liquors remaining from the above recrystallizations were concentrated, treated with 12 mL of 5 N HCl and extracted with EtOAc. The organic layer was washed with H₂O, dried, and concentrated under vacuum to give a brown solid that was dissolved in CH₂Cl₂ and treated with activated carbon. After filtration of the charcoal and evaporation of the filtrate, a white solid was obtained, which was dissolved in Me₂CO, and 1 equiv of (*R*)-(+)- α -MBA was added, as in the previous case. The white crystalline precipitate formed was filtered, washed with Me₂CO, and, after four recrystallizations from Me₂CO, gave 5 g of (*R*)-(+)-**3b** as a white cotton-like material, mp 165–166 °C; [α]_D +73° (*c* 3.0, MeOH).

(S)-(-)-2,3-Dihydro-2-carboxy-6-methoxybenzofuran (2a). A vigorously stirred mixture of the salt (-)-3a (5 g), H₂O (50 mL), and EtOAc (50 mL) was cooled in an ice-H₂O bath and acidified dropwise with 5.3 mL of 5 N HCl over a period of 10 min. The separated organic layer was washed with H₂O, dried, and evaporated under vacuum to afford (S)-(-)-2a (3 g) as a white amorphous solid: mp 122–123 °C; $[\alpha]_D = 75^\circ$ (c 0.92, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 201 (1.64), 286 (0.66) nm; IR (KBr) ν_{max} 3502, 1710, 1240 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 10.55 (1H, s, COOH), 7.03 (1H, d, J = 8.2 Hz, H-4), 6.50 (1H, d, J = 2.3 Hz, H-7), 6.45 (1H, dd, J = 8.2, 2.3 Hz, H-5), 5.23 (1H, dd, J = 10.8, 6.4 Hz, H-2), 3.75 (3H, s, OCH₃), 3.53 (1H, dd, J = 15.5, 10.8 Hz, H-3 β), 3.31 (1H, dd, J = 15.5, 6.4 Hz, H-3α); ¹³C NMR (CDCl₃, 74.5 MHz) δ 176.72 (s, C-1'), 160.54 (s, C-6), 159.98 (s, C-7a), 124.66 (d, C-4), 116.08 (s, C-3a), 107.30 (d, C-5), 96.47 (d, C-7), 79.09 (d, C-2), 55.50 (q, OCH₃), 33.24 (t, C-3); EIMS *m*/*z* 194 [M]⁺ (98), 176 (38), 148 (100), 133 (34).

(*R*)-(+)-2,3-Dihydro-2-carboxy-6-methoxybenzofuran (2b). Using the previous procedure, acidification of 5 g of salt (+)-3b gave (*R*)-(+)-2b (2.9 g) as a white amorphous solid: mp 121-122 °C; $[\alpha]_D$ +75.5° (*c* 2.9, CHCl₃).

(S)-(-)-2,3-Dihydro-2-carboxymethyl-6-methoxybenzofuran (4a). A solution of (S)-(-)-2a (3 g, 15.5 mmol) and *p*-toluenesulfonic acid (100 mg) in 30 mL of anhydrous MeOH was refluxed for 3 h. The solution was concentrated to a small volume under vacuum and extracted with EtOAc. The organic layer was washed with 10% aqueous K_2CO_3 (2 \times 30 mL) and H₂O and dried. Evaporation of the solvent under reduced pressure yielded (*S*)-(–)-**4a** (3.04 g, 95%) as a colorless oil: bp 90 °C/0.04 mmHg; $[\alpha]_D - 52.2^\circ$ (*c* 4.4, CHCl₃); UV (EtOH) λ_{max} $(\log \epsilon)$ 202 (1.50), 286 (0.68) nm; IR (dry film) ν_{max} 1742, 1148 cm^{-1} ; ¹H NMR (CDCl₃, 300 MHz) δ 7.03 (1H, d, J = 8.2 Hz, H-4), 6.50 (1H, d, J = 2.3 Hz, H-7), 6.44 (1H, dd, J = 8.2, 2.3 Hz, H-5), 5.22 (1H, dd, J = 10.5, 6.8 Hz, H-2), 3.80 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.49 (1H, dd, J = 15.4, 10.5 Hz, H-3 β), 3.30 (1H, dd, J = 15.4, 6.8 Hz, H-3 α); ¹³C NMR (CDCl₃, 74.5 MHz) & 171.66 (s, C-1'), 160.61 (s, C-6), 160.30 (s, C-7a), 124.66 (d, C-4), 116.48 (s, C-3a), 107.05 (d, C-5), 96.50 (d, C-7), 79.84 (d, C-2), 55.53 (q, OCH₃), 52.54 (q, OCH₃), 33.24 (t, C-3); EIMS m/s 208 [M]⁺ (100), 176 (81), 148 (99), 121 (68).

(*R*)-(+)-2,3-Dihydro-2-carboxymethyl-6-methoxybenzofuran (4b). The ester (*R*)-(+)-4b (2.95 g, 95%) was obtained from (*R*)-(+)-2b, using the previous procedure, as a colorless oil; bp 92 °C/0.04 mmHg, $[\alpha]_D$ +52.6° (*c* 2.5, CHCl₃).

(S)-(+)-2,3-Dihydro-2-(2-hydroxyisopropyl)-6-methoxy**benzofuran (5a).** A solution of (*S*)-(–)-**4a** (3.0 g, 14.4 mmol) in 20 mL of dry Et₂O was added dropwise to a solution of methylmagnesium iodide, prepared from iodomethane (4.5 mL, 72.3 mmol) and magnesium turnings (1.4 g, 57.6 mmol) in dry Et₂O (20 mL), at room temperature under a nitrogen atmosphere. After stirring for 12 h at room temperature, the mixture was quenched with a saturated NH₄Cl solution. The reaction was extracted with Et₂O (2×50 mL), the combined organic layer was washed with H₂O, dried, and concentrated. The residue was purified by column chromatography eluting with hexane-EtOAc (98:2) to afford (*S*)-(+)-5a (2.1 g, 70%) as a colorless oil: bp 106 °C/0.04 mmHg; $[\alpha]_D$ +33.5° (c 5.1, CHCl₃); UV (EtOH) λ_{rnax} (log ϵ) 202 (1.58) nm; IR (dry film) $v_{\rm max}$ 3582 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.01 (1H, d, J= 8.8 Hz, H-4), 6.38 (1H, d, J = 2.3 Hz, H-7), 6.38 (1H, dd, J = 8.8, 2.3 Hz, H-5), 4.60 (1H, t, J = 9.0 Hz, H-2), 3.74 (3H, s, OCH₃), 3.06 (2H, d, J = 9.0 Hz, CH₂-3), 2.17 (1H, s, OH), 1.31

(3H, s, CH₃-2'), 1.19 (3H, s, CH₃-3'); ¹H NMR (C₆D₆, 300 MHz) δ 6.87 (1H, d, J = 8.1 Hz, H-4), 6.55 (1H, d, J = 2.3 Hz, H-7), 6.43 (1H, dd, J = 8.1, 2.3 Hz, H-5), 4.33 (1H, t, J = 9.0 Hz, H-2), 3.34 (3H, s, OCH₃), 2.94 (1H, dd, J = 15.1, 9.0 Hz, H-3 β), 2.64 (1H, dd, J = 15.1, 9.0 Hz, H-3 α), 2.04 (1H, s, OH), 1.16 (3H, s, CH₃-2'), 1.02 (3H, s, CH₃-3'); ¹³C NMR (CDCl₃, 74.5 MHz) δ 160.64 (s, C-6), 160.10 (s, C-7a), 124.68 (d, C-4), 118.90 (s, C-3a), 105.86 (d, C-5), 95.92 (d, C-7), 90.15 (d, C-2), 71.71 (s, C-1'), 55.35 (q, OCH₃), 29.94 (t, C-3), 25.89 (q, C-2'), 23.90 (q, C-3'); EIMS m/z 208 [M]⁺ (82), 149 (98), 148 (11), 59 (50).

(*R*)-(-)-2,3-Dihydro-2-(2-hydroxyisopropyl)-6-methoxybenzofuran (5b). Using the previous procedure, the Grignard reaction with the ester (*R*)-(+)-4b (2.9 g) gave carbinol (*R*)-(-)-5b (2.03 g, 70%) as a colorless oil: $[\alpha]_D - 33^\circ$ (*c* 2.8; CHCl₃).

(S)-(+)-2,3-Dihydro-2-(2-acetoxyisopropyl)-6-methoxybenzofuran (6a). A solution of (S)-(+)-5a (2 g, 9.6 mmol) in 5 mL of Ac₂O was heated under reflux for 2 h. The solution was poured over ice and extracted with Et₂O. The organic layer was washed with 2% aqueous NaOH (2 \times 50 mL) and H₂O, dried, and evaporated. The residue was chromatographed, eluting with hexane-EtOAc (99:1), to yield (S)-(+)-6a (1.92 g, 80%) as an amorphous solid: mp 88–90 °C; $[\alpha]_D$ +42.8° (*c* 1.5, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 202 (1.71), 287 (0.81) nm; IR (KBr) ν_{max} 1732, 1198 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.01 (1H, d, J = 8.8 Hz, H-4), 6.39 (1H, d, J = 2.5 Hz, H-7), 6.39 (1H, dd, J = 8.8, 2.5 Hz, H-5), 4.98 (1H, dd, J = 9.6, 8.1 Hz, H-2), 3.75 (3H, s, OCH₃), 3.13 (1H, dd, J = 15.5, 9.6 Hz, H-3 β), 3.03 (1H, dd, J = 15.5, 8.1 Hz, H-3 α), 1.99 (3H, s, COCH₃), 1.55 (3H, s, CH₃-2'), 1.49 (3H, s, CH₃-3'); ¹³C NMR (CDCl₃, 74.5 MHz) & 170.23 (s, COCH₃), 160.94 (s, C-6), 160.29 (s, C-7a), 124.54 (d, C-4), 118.23 (s, C-3a), 105.94 (d, C-5), 95.89 (d, C-7), 87.48 (d, C-2), 82.56 (s, C-1'), 55.39 (q, OCH₃), 30.07 (t, C-3), 22.27 (q, COCH₃), 21.88 (q, C-2'), 20.88 (q, C-3'); EIMS $m/z 250 [M]^+$ (10), 175 (100), 149 (7), 43 (8).

(*R*)-(-)-2,3-Dihydro-2-(2-acetoxyisopropyl)-6-methoxybenzofuran (6b). Using the previous procedure, the acetylation of (*R*)-(-)-5b (2.5 g, 12 mmol) gave (*R*)-(-)-6b (2.34 g, 78%) as a white amorphous solid: mp 88–90 °C; $[\alpha]_D$ –42.5° (*c* 1.3, CHCl₃).

(*S*)-(–)-2,3-Dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1a) and 6-Methoxy-2-isopropylbenzofuran (7). A sample of (*S*)-(+)-6a (1.5 g, 6 mmol) was heated in a muffle furnace at 330 °C for 10 min. The evolution of HOAc began at about 280 °C. The residue was allowed to cool to room temperature, dissolved in Et₂O, washed with 5% aqueous NaHCO₃ and H₂O, dried, and evaporated. The residue was purified by flash column chromatography eluting with petroleum ether–EtOAc (98:2) to give (*S*)-(–)-1a (800 mg, 70%, R_f 0.45, hexane–EtOAc 95:5) and 7 (100 mg, 8.2%, R_f 0.54.).

Olefin (S)-(-)-1a: colorless oil; $[\alpha]_D - 5.8^{\circ}$ (*c* 2.0, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 202 (4.27), 248 (3.97), 255 (3.95), 290 (3.68) nm; IR (dry film) ν_{max} 1654 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.01 (1H, dd, J = 7.7, 1.2 Hz, H-4), 6.40 (1H, d, J =2.2 Hz, H-7), 6.38 (1H, dd, J = 7.7, 2.2 Hz, H-5), 5.17 (1H, t, J = 8.8 Hz, H-2), 5.07 (1H, m, H-2'a), 4.89 (1H, m, H-2'b), 3.75 (3H, s, OCH₃), 3.26 (1H, dd, J = 15.1, 8.8 Hz, H-3 β), 2.95 (1H, ddd, J = 15.1, 8.8, 1.2 Hz, H-3 α), 1.75 (3H, t, J = 1.3 Hz, CH₃ 3'); ¹³C NMR (CDCl₃, 74.5 MHz) δ 161.00 (s, C-6), 160.39 (s, C-7a), 144.09 (s, C-1), 124.68 (d, C-4), 118.50 (s, C-3a), 111.87 (t, C-2'), 105.85 (d, C-5), 96.03 (d, C-7), 86.63 (d, C-2), 55.48 (q, OCH₃), 34.10 (t, C-3), 17.19 (q, C-3'); EIMS *m*/*z* 190 [M]⁺ (85), 175 (100), 160 (17), 41 (4).

Benzofurane 7: colorless oil; UV (EtOH) λ_{max} (log ϵ) 202 (4.27), 248 (3.97) 255 (3.95), 290 (3.68) nm; IR (dry film) ν_{max} 2964, 1490, 1030, 820, 740 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.31 (1H, d, J = 8.5 Hz, H-4), 6.96 (1H, d, J = 2.3 Hz, H-7), 6.80 (1H, dd, J = 8.5, 2.3 Hz, H-5), 6.23 (1H, t, J = 1.0 Hz, H-3), 3.78 (3H, s, OCH₃), 3.01 (1H, dh, J = 6.9, 1.0 Hz, H-1), 1.30 (6H, d, J = 6.9 Hz, CH₃-2' and CH₃-3'); ¹³C NMR (CDCl₃, 74.5 MHz) δ 163.96 (s, C-2), 157.23 (s, C-6), 155.49 (s, C-7a), 122.18 (s, C-3a), 120.27 (d, C-4), 111.01 (d, C-5), 99.34 (d, C-3), 95.88 (d, C-7), 55.63 (q, OCH₃), 28.20 (d, C-1'), 20.96 (q, C-2' and C-3'); EIMS m/z 190 [M]⁺ (48), 175 (100), 160 (7), 132 (8), 43 (28).

(*R*)-(+)-2,3-Dihydro-2-(1-methylethenyl)-6-methoxybenzofuran (1b). The olefin (*R*)-(+)-1b was prepared from (*R*)-(-)-6b (2 g, 8.0 mmol) in the same way as described above, giving (*R*)-(+)-1b (1.03 g, 68%) as a colorless oil: $[\alpha]_D$ +5.4° (*c* 2.2, CHCl₃).

(S)-(-)-2,3-Dihydro-2-carboxymethyl-6-hydroxybenzofuran (9). A mixture of 100 mg of prehydrogenated 5% palladium on charcoal catalyst in EtOH and 1 g of the ester (S)-(-)-**8**,¹¹ [α]_D -53° (*c* 2.5, CHCl₃), dissolved in EtOH, was shaken in a hydrogen atmosphere over 15 h. The catalyst was filtered off and the EtOH evaporated under vacuum to give (S)-(-)-9 (531 mg, 80%) as an amorphous solid: mp 125-127 °C; $[\alpha]_D - 44^\circ$ (*c* 1.9, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 221 (4.42), 289 (4.16) nm; IR (KBr) ν_{max} 3376, 1742, 1244, 1142 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.97 (1H, d, J = 8.0 Hz, H-4), 6.48 (1H, d, J = 2.2 Hz, H-7), 6.37 (1H, dd, J = 8.0, 2.2 Hz, H-5), 5.70 (1H, s, OH), 5.22 (1H, dd, J = 10.5, 6.7 Hz, H-2), 3.81 (3H, s, COOCH₃), 3.49 (1H, dd, J = 15.4, 10.5 Hz, H-3 β), 3.27 (1H, dd, J = 15.4, 6.7 Hz, H-3 α); ¹³C NMR (CDCl₃, 74.5 MHz) δ 172.12 (s, C-1'), 160.15 (s, C-6), 156.57 (s, C-7a), 124.83 (d, C-4), 116.30 (s, C-3a), 108.24 (d, C-5), 98.18 (d, C-7), 79.76 (d, C-2), 52.69 (q, COOCH₃), 33.27 (t, C-3); EIMS m/z 194 [M]⁺ (68), 162 (45), 134 (100), 107 (100), 77 (20).

(S)-(-)-2,3-Dihydro-2-carboxymethyl-6-methoxybenzofuran (4a). A mixture of K_2CO_3 (712 mg, 5.16,mmol), (S)-(-)-9 (500 mg, 2.58 mmol) and iodomethane (0.16 mL, 2.58 mmol) in anhydrous Me₂CO (30 mL) was refluxed for 3 h. The reaction mixture was concentrated to a small volume under vacuum, extracted with Et₂O, washed with H₂O, dried, and evaporated. The residue was purified by column chromatog-raphy eluting with hexane–EtOAc (98:2) to afford (S)-(-)-4a (429 mg, 80%) as a colorless oil, $[\alpha]_D$ –51.6° (*c* 2.0, CHCl₃), identical by IR, ¹H NMR, and ¹³C NMR comparison to a sample obtained as described above.

Acknowledgment. Partial financial support from CoNa-CyT (México) and Universidad Veracruzana is acknowledged.

References and Notes

- (1) (a) Formula Index, $A-C_{15}$, *Chem. Abstr.* **1978**, *88*, 849F, left column, ninth line from bottom. (b) Tenth Collective Index, Formula $C_{11}H_{12}O_5 C_{13}H_{16}FN_5$, *Chem. Abstr.* **1977–1981**, *86–95*, 6195F, left column, 12th line from bottom.
- (2) (a) Formula Index, A–C₁₅, *Chem. Abstr.* **1983**, *98*, 985F, left column, 33rd line from bottom. (b) Eleventh Collective Index, Formula $C_{10}H_{13}$ -NOS– $C_{12}H_{15}NO_5V$, *Chem. Abstr.* **1982–1986**, *96–105*, 6950F, central column, 11th line from bottom.
- (3) Bohlmann, F.; Mahanta, P. K.; Suwita, A.; Suwita, A.; Natu, A. A.; Zdero, C.; Dorner, W.; Ehlers, D.; Grenz, M. *Phytochemistry* 1977, 16, 1973–1981.
- (4) Gómez, F.; Quijano, L.; Calderón, J. S.; Perales, A.; Rios, T. Phytochemistry 1982, 21, 2095–2097.
- (5) Zalkow, L. H.; Keinan, E.; Steindel, S.; Kalyanaraman, A. R.; Bertrand, J. A. *Tetrahedron Lett.* **1972**, 2873–2876.
- (6) Will, W.; Beek, P. Ber. dt. Chem. Ges. 1886, 19, 1783.
- (7) Birch, A. J.; Maung, M.; Pelter, A. Aust. J. Chem. 1969, 22, 1923– 1932.
- (8) Bowen, D. M.; DeGraw, J. I., Jr.; Shah, V. R.; Bonner, W. A. J. Med. Chem. 1963, 6, 315–319.
- (9) Yamaguchi, S.; Miyata, A.; Ueno, M.; Hase, T.; Yamamoto, K.; Kawase, Y. Bull. Chem. Soc. Jpn. 1984, 57, 617–618.
- (10) Asakawa, Y.; Hashimoto, T.; Takikawa, K.; Tori, M.; Ogawa, S. Phytochemistry 1991, 30, 235-251.
- (11) Harada, I.; Hirose, Y.; Nakazaki, M. Tetrahedron Lett. 1968, 5463– 5466.
- (12) Nakajima, M.; Oda, J.; Fukami, H. Agr. Biol. Chem. 1963, 27, 695– 699.
- (13) PCMODEL Molecular Modeling program is available from Serena Software, Box 3076, Bloomington, IN 47402-3076.
- (14) Cerda-García-Rojas, C. M.; Zepeda, L. G.; Joseph-Nathan, P. Tetrahedron Comput. Methodol. 1990, 3, 113–118.
- (15) Joseph-Nathan, P.; Díaz, E. Introducción a la Resonancia Magnética Nuclear, Limusa-Wiley: México, 1970; pp 40–46.

NP9805210